FEATURES
- Easy to install
- Rugged / robust construction suitable for extreme outdoor conditions
- Accurate and reliable readings
- Manual readings or automatic monitoring using datalogger

APPLICATIONS
- Monitoring movement of structures under the effects of nearby tunnelling or excavations
- Monitoring performance of bridges, beams, struts and other structures under load
- Monitoring deflection movement of retaining structures
- Slope stability monitoring with early warning alarm system

General
The Geosystems Tilt-Beam Sensor is designed to measure differential displacement and angular rotation in structures such as bridges, dams, tunnels, buildings, retaining walls etc.

It is a low cost alternative to accelerometer based tilt sensors, settlement systems or surveying.

The Tilt-Beam Sensor is available in two versions—Horizontal Tilt-beam for monitoring vertical displacement and tilt, and Vertical Tilt-beam for lateral displacement and tilt.

Operating Principle
The tilt sensor consists of a precision bubble with electrolytic fluid and electrodes which contact the fluid. When the tilt-beam is tilted (due to differential displacement), the resistance between contacts changes, thus producing an output voltage proportional to the angle of tilt.

The sensor wires are connected to a PCB with a temperature sensor (thermistor) and COM connector for portable readout.

Structural movements will result in rotational tilt of the tilt-beam supported between two anchor points. Differential displacement is calculated as follows:

\[\text{Displacement } \Delta L = L \sin(\alpha_1 - \alpha_0) \]

Where:
- \(L \) - Distance between anchors (mm)
- \(\alpha_0 \) - Initial tilt reading (degrees)
- \(\alpha_1 \) - Current tilt reading (degrees)
- \(\Delta L \) - Displacement to be measured

Description
The Tilt-Beam system consists of a rigid beam (of fixed length) with a uniaxial electrolytic tilt sensor mounted at the centre of the beam.

In the field, the beam is mounted horizontally on two anchor bolts that are set securely on the structure. The sensor unit is zero adjusted using a portable readout and adjustment unit in the sensor assembly.

Cumulative Differential Displacement
Principle of Differential Displacement \[\Delta L = Lx\sin\alpha \]

Displacement Profile

For Further Information Contact: Geosystems Australia Pty Ltd, 20 William Street East, Lilydale
VICTORIA 3140, AUSTRALIA Tel: 61 3 9735 5255 Fax: 61 3 9735 5277

Email: info@geosystems.com.au Website: www.geosystems.com.au
Tilt-Beam Sensor Model 2600-GS-TB1

Accessories
- Portable Readout
- Datalogger

Ordering Information
- Specify Horizontal or Vertical
- Specify beam length (1m, 2m or 3m)
- Cable length required
- Anchor type

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Range:</td>
<td>± 0.5°C</td>
</tr>
<tr>
<td>Resolution:</td>
<td>1 arc second</td>
</tr>
<tr>
<td>Repeatability:</td>
<td>± 3 arc seconds</td>
</tr>
<tr>
<td>Temperature Range:</td>
<td>-20 to +50°C</td>
</tr>
<tr>
<td>Max Thermal Error:</td>
<td>0.3% F.S.</td>
</tr>
</tbody>
</table>

Due to on-going design improvements and reviews, we reserve the right to amend product and specifications without prior notice.